Abstract
AbstractVolcanic activity can induce flank failure, sometimes generating large earthquakes and tsunamis. However, the failure structures have never been fully characterized and the failure mechanism is still debated. Magmatic activity is a possible trigger, either through fault slip, which might be induced by dyke intrusions, or through sill intrusions, which might be undergoing coeval normal displacements and slip. At the Piton de la Fournaise volcano, satellite imagery combined with inverse modeling highlights the pathways of 57 magmatic intrusions that took place between 1998 and 2020. We show that a major arcuate dyke intrusion zone is connected at depth to a sill intrusion zone, which becomes a fault zone towards the sea, forming a spoon-shaped structure. Some sills are affected by coeval normal displacement and seaward slip. Overall, the structure is characterized by a continuum of displacement from no slip, to sheared sills and finally pure slip. Repeated intrusions into this spoon-shaped structure could trigger catastrophic collapses.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献