Abstract
AbstractThe stoichiometric photocatalytic reaction of CO2 with H2O is one of the great challenges in photocatalysis. Here, we construct a Cu2O-Pt/SiC/IrOx composite by a controlled photodeposition and then an artificial photosynthetic system with Nafion membrane as diaphragm separating reduction and oxidation half-reactions. The artificial system exhibits excellent photocatalytic performance for CO2 reduction to HCOOH and H2O oxidation to O2 under visible light irradiation. The yields of HCOOH and O2 meet almost stoichiometric ratio and are as high as 896.7 and 440.7 μmol g−1 h−1, respectively. The high efficiencies of CO2 reduction and H2O oxidation in the artificial system are attributed to both the direct Z-scheme electronic structure of Cu2O-Pt/SiC/IrOx and the indirect Z-scheme spatially separated reduction and oxidation units, which greatly prolong lifetime of photogenerated electrons and holes and prevent the backward reaction of products. This work provides an effective and feasible strategy to increase the efficiency of artificial photosynthesis.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
271 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献