Abstract
AbstractThe phase diagram of a material is of central importance in describing the properties and behaviour of a condensed matter system. In this work, we prove that the task of determining the phase diagram of a many-body Hamiltonian is in general uncomputable, by explicitly constructing a continuous one-parameter family of Hamiltonians H(φ), where $$\varphi \in {\mathbb{R}}$$
φ
∈
R
, for which this is the case. The H(φ) are translationally-invariant, with nearest-neighbour couplings on a 2D spin lattice. As well as implying uncomputablity of phase diagrams, our result also proves that undecidability can hold for a set of positive measure of a Hamiltonian’s parameter space, whereas previous results only implied undecidability on a zero measure set. This brings the spectral gap undecidability results a step closer to standard condensed matter problems, where one typically studies phase diagrams of many-body models as a function of one or more continuously varying real parameters, such as magnetic field strength or pressure.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献