In situ X-ray and acoustic observations of deep seismic faulting upon phase transitions in olivine

Author:

Ohuchi TomohiroORCID,Higo Yuji,Tange Yoshinori,Sakai Takeshi,Matsuda Kohei,Irifune Tetsuo

Abstract

AbstractThe activity of deep-focus earthquakes, which increases with depth from ~400 km to a peak at ~600 km, is enigmatic, because conventional brittle failure is unlikely to occur at elevated pressures. It becomes increasingly clear that pressure-induced phase transitions of olivine are responsible for the occurrence of the earthquakes, based on deformation experiments under pressure. However, many such experiments were made using analogue materials and those on mantle olivine are required to verify the hypotheses developed by these studies. Here we report the results of deformation experiments on (Mg,Fe)2SiO4 olivine at 11−17 GPa and 860−1350 K, equivalent to the conditions of the slabs subducted into the mantle transition zone. We find that throughgoing faulting occurs only at very limited temperatures of 1100−1160 K, accompanied by intense acoustic emissions at the onset of rupture. Fault sliding aided by shear heating occurs along a weak layer, which is formed via linking-up of lenticular packets filled with nanocrystalline olivine and wadsleyite. Our study suggests that transformational faulting occurs on the isothermal surface of the metastable olivine wedge in slabs, leading to deep-focus earthquakes in limited regions and depth range.

Funder

MEXT | Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3