Dilution effect of the building area on energy intensity in urban residential buildings

Author:

Gao Jingxin,Zhong XiaoyangORCID,Cai Weiguang,Ren Hong,Huo TengfeiORCID,Wang Xia,Mi ZhifuORCID

Abstract

Abstract Urban residential buildings make large contributions to energy consumption. Energy consumption per square meter is most widely used to measure energy efficiency in urban residential buildings. This study aims to explore whether it is an appropriate indicator. An extended STIRPAT model was used based on the survey data from 867 households. Here we present that building area per household has a dilution effect on energy consumption per square meter. Neglecting this dilution effect leads to a significant overestimation of the effectiveness of building energy savings standards. Further analysis suggests that the peak of energy consumption per square meter in China’s urban residential buildings occurred in 2012 when accounting for the dilution effect, which is 11 years later than it would have occurred without considering the dilution effect. Overall, overlooking the dilution effect may lead to misleading judgments of crucial energy-saving policy tools, as well as the ongoing trend of residential energy consumption in China.

Funder

the National Social Science Fund of China (19BJY065), the Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

Reference62 articles.

1. Palmer, C. & Larson, B. M. H. Should we move the whitebark pine? Assisted migration, ethics and global environmental change. Environ. Values 23, 641–662 (2014).

2. Kaja, N. Review of built environment impacts on climate change, design strategies for reduction. Int. J. Civ. Struct. Environ. Infrastruct. Eng. Res. Dev. 2, 42–51 (2012).

3. Overpeck, J. et al. in Assessment of Climate Change in the Southwest United States: A Report Prepared for the National Climate Assessment (eds Garfin, G. et al.) 1–20 (Island Press/Center for Resource Economics, Washington DC, 2013).

4. Liu, Z. et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 524, 335 (2015).

5. Mi, Z. et al. Chinese CO2 emission flows have reversed since the global financial crisis. Nat. Commun. 8, 1712 (2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3