Spatiotemporal dynamics of traffic bottlenecks yields an early signal of heavy congestions

Author:

Duan JinxiaoORCID,Zeng Guanwen,Serok Nimrod,Li Daqing,Lieberthal Efrat BlumenfeldORCID,Huang Hai-JunORCID,Havlin ShlomoORCID

Abstract

AbstractHeavy traffic jams are difficult to predict due to the complexity of traffic dynamics. Understanding the network dynamics of traffic bottlenecks can help avoid critical large traffic jams and improve overall traffic conditions. Here, we develop a method to forecast heavy congestions based on their early propagation stage. Our framework follows the network propagation and dissipation of the traffic jams originated from a bottleneck emergence, growth, and its recovery and disappearance. Based on large-scale urban traffic-speed data, we find that dissipation duration of jams follows approximately power-law distributions, and typically, traffic jams dissolve nearly twice slower than their growth. Importantly, we find that the growth speed, even at the first 15 minutes of a jam, is highly correlated with the maximal size of the jam. Our methodology can be applied in urban traffic control systems to forecast heavy traffic bottlenecks and prevent them before they propagate to large network congestions.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3