Abstract
Abstract
Artificial electromagnetic surfaces, metasurfaces, control light in the desired manner through the introduction of abrupt changes of electromagnetic fields at interfaces. Current modelling of metasurfaces successfully exploits generalised sheet transition conditions (GSTCs), a set of boundary conditions that account for electric and magnetic metasurface-induced optical responses. GSTCs are powerful theoretical tools but they are not readily applicable for arbitrarily shaped metasurfaces. Accurate and computationally efficient algorithms capable of implementing artificial boundary conditions are highly desired for designing free-form photonic devices. To address this challenge, we propose a numerical method based on conformal boundary optics with a modified finite difference time-domain (FDTD) approach which accurately calculates the electromagnetic fields across conformal metasurfaces. Illustrative examples of curved meta-optics are presented, showing results in good agreement with theoretical predictions. This method can become a powerful tool for designing and predicting optical functionalities of conformal metasurfaces for new lightweight, flexible and wearable photonic devices.
Funder
National Natural Science Foundation of China
Ministry of Education - Singapore
National Research Foundation Singapore
EC | European Research Council
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献