Abstract
AbstractPrimary sensory regions are believed to instantiate stable neural representations, yet a number of recent rodent studies suggest instead that representations drift over time. To test whether sensory representations are stable in human visual cortex, we analyzed a large longitudinal dataset of fMRI responses to images of natural scenes. We fit the fMRI responses using an image-computable encoding model and tested how well the model generalized across sessions. We found systematic changes in model fits that exhibited cumulative drift over many months. Convergent analyses pinpoint changes in neural responsivity as the source of the drift, while population-level representational dissimilarities between visual stimuli were unchanged. These observations suggest that downstream cortical areas may read-out a stable representation, even as representations within V1 exhibit drift.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献