Abstract
AbstractThe bacterial enzymes FtsW and FtsI, encoded in the highly conserved dcw gene cluster, are considered to be universally essential for the synthesis of septal peptidoglycan (PG) during cell division. Here, we show that the pathogen Clostridioides difficile lacks a canonical FtsW/FtsI pair, and its dcw-encoded PG synthases have undergone a specialization to fulfill sporulation-specific roles, including synthesizing septal PG during the sporulation-specific mode of cell division. Although these enzymes are directly regulated by canonical divisome components during this process, dcw-encoded PG synthases and their divisome regulators are dispensable for cell division during normal growth. Instead, C. difficile uses a bifunctional class A penicillin-binding protein as the core divisome PG synthase, revealing a previously unreported role for this class of enzymes. Our findings support that the emergence of endosporulation in the Firmicutes phylum facilitated the functional repurposing of cell division factors. Moreover, they indicate that C. difficile, and likely other clostridia, assemble a distinct divisome that therefore may represent a unique target for therapeutic interventions.
Funder
Division of Intramural Research, National Institute of Allergy and Infectious Diseases
Burroughs Wellcome Fund - Investigators in the Pathogenesis of Infectious Disease Award.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Reference87 articles.
1. Egan, A. J. F., Errington, J. & Vollmer, W. Regulation of peptidoglycan synthesis and remodelling. Nat. Rev. Microbiol. 18, 446–460 (2020).
2. Meeske, A. J. et al. SEDS proteins are a widespread family of bacterial cell wall polymerases. Nature 537, 634–638 (2016).
3. Cho, H. et al. Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously. Nat. Microbiol. 1, 1–8 (2016).
4. Emami, K. et al. RodA as the missing glycosyltransferase in Bacillus subtilis and antibiotic discovery for the peptidoglycan polymerase pathway. Nat. Microbiol. 2, 1–9 (2017).
5. Taguchi, A. et al. FtsW is a peptidoglycan polymerase that is functional only in complex with its cognate penicillin-binding protein. Nat. Microbiol. 4, 587–594 (2019).
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献