Abstract
AbstractUnderstanding the interactions between small, submicrometer-sized colloidal particles is crucial for numerous scientific disciplines and technological applications. In this study, we employ optical tweezers as a powerful tool to investigate these interactions. We utilize a full image reconstruction technique to achieve high precision in characterizing particle pairs that enable nanometer-scale measurement of their positions. This approach captures intricate details and provides a comprehensive understanding of the spatial arrangement between particles, overcoming previous limitations in resolution. Moreover, our research demonstrates that properly accounting for optical binding forces to determine the intrinsic interaction potential is vital. We employ a discrete dipole approximation approach to calculate optical binding potentials and achieve a good agreement between the calculated and observed binding forces. We incorporate the findings from these simulations into the assessment of the intrinsic interaction potentials and validate our methodology by using short-range depletion attraction induced by micelles as an example.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献