Direct investigation of the atomic structure and decreased magnetism of antiphase boundaries in garnet

Author:

Xu Kun,Lin TingORCID,Rao YihengORCID,Wang Ziqiang,Yang Qinghui,Zhang Huaiwu,Zhu JingORCID

Abstract

AbstractThe ferrimagnetic insulator iron garnets, tailored artificially with specific compositions, have been widely utilized in magneto-optical (MO) devices. The adjustment on synthesis always induces structural variation, which is underestimated due to the limited knowledge of the local structures. Here, by analyzing the structure and magnetic properties, two different antiphase boundaries (APBs) with individual interfacial structure are investigated in substituted iron garnet film. We reveal that magnetic signals decrease in the regions close to APBs, which implies degraded MO performance. In particular, the segregation of oxygen deficiencies across the APBs directly leads to reduced magnetic elements, further decreases the magnetic moment of Fe and results in a higher absorption coefficient close to the APBs. Furthermore, the formation of APBs can be eliminated by optimizing the growth rate, thus contributing to the enhanced MO performance. These analyses at the atomic scale provide important guidance for optimizing MO functional materials.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3