Abstract
AbstractEfficient CO2 separation technologies are essential for mitigating climate change. Compared to traditional thermochemical methods, electrochemically mediated carbon capture using redox-tunable sorbents emerges as a promising alternative due to its versatility and energy efficiency. However, the undesirable linear free-energy relationship between redox potential and CO2 binding affinity in existing chemistry makes it fundamentally challenging to optimise key sorbent properties independently via chemical modifications. Here, we demonstrate a design paradigm for electrochemically mediated carbon capture sorbents, which breaks the undesirable scaling relationship by leveraging intramolecular hydrogen bonding in isoindigo derivatives. The redox potentials of isoindigos can be anodically shifted by >350 mV to impart sorbents with high oxygen stability without compromising CO2 binding, culminating in a system with minimised parasitic reactions. With the synthetic space presented, our effort provides a generalisable strategy to finetune interactions between redox-active organic molecules and CO2, addressing a longstanding challenge in developing effective carbon capture methods driven by non-conventional stimuli.
Funder
Alfred P. Sloan Foundation
Science and Technology Development Fund (FDCT) of Macau SAR
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献