Enabling liquid crystal elastomers with tunable actuation temperature

Author:

Yao Yanjin,He Enjian,Xu Hongtu,Liu Yawen,Yang Zhijun,Wei YenORCID,Ji YanORCID

Abstract

AbstractLiquid crystalline elastomers are regarded as a kind of desirable soft actuator material for soft robotics and other high-tech areas. The isotropization temperature (Ti) plays an important role as it determines the actuation temperature and other properties, which in turn has a great effect on their applications. In the past, the common physical methods (e.g. annealing) to tune Ti is not applicable to tune the actuation temperature. The new Ti obtained by annealing immediately goes back to the old one once it is heated to a temperature above Ti, while actuation needs a temperature higher than Ti. For a fully cross-linked LCE material, once it is synthesized, the actuation temperature is fixed. Accordingly, the actuation temperature can not be tuned unless the chemical structure is changed, which usually needs to start from the very beginning of the molecular design and material synthesis. Here, we found that different Ti achieved by annealing can be preserved by reversible reactions of dynamic covalent bonds in covalently adaptable LC networks including LC vitrimers. Thus, a variety of soft actuators with different actuation temperatures can be obtained from the same fully cross-linked LCE material. As the tuning of Ti is also reversible, the same actuator can be adjusted for applications with different actuation temperature requirements. Such tuning will also expand the application of LCEs.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3