Abstract
AbstractOptically pumped magnetometers (OPMs) based on alkali-atom vapors are ultra-sensitive devices for dc and low-frequency ac magnetic measurements. Here, in combination with fast-field-cycling hardware and high-resolution spectroscopic detection, we demonstrate applicability of OPMs in quantifying nuclear magnetic relaxation phenomena. Relaxation rate dispersion across the nT to mT field range enables quantitative investigation of extremely slow molecular motion correlations in the liquid state, with time constants > 1 ms, and insight into the corresponding relaxation mechanisms. The 10-20 fT/$$\sqrt{{\rm{H}}}{\rm{z}}$$
H
z
sensitivity of an OPM between 10 Hz and 5.5 kHz 1H Larmor frequency suffices to detect magnetic resonance signals from ~ 0.1 mL liquid volumes imbibed in simple mesoporous materials, or inside metal tubing, following nuclear spin prepolarization adjacent to the OPM. High-resolution spectroscopic detection can resolve inter-nucleus spin-spin couplings, further widening the scope of application to chemical systems. Expected limits of the technique regarding measurement of relaxation rates above 100 s−1 are discussed.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference51 articles.
1. Kimmich, R. Field cycling in NMR relaxation spectroscopy applications in biological, chemical and polymer physics. Bull. Magn. Reson. 1, 195–218 (1979).
2. Kimmich, R. (Ed.), Field Cycling NMR Relaxometry: Instrumentation, Model Theories and Applications (The Royal Society of Chemistry, Oxford, 2018).
3. Kimmich, R. & Anoardo, E. Field-cycling NMR relaxometry. Progr. Nucl. Magn. Reson. Spectrosc. 44, 257–320 (2004).
4. Schneider, D. J. & Freed, J. H. Spin relaxation and motional dynamics. In Advances in Chemical Physics (eds. Hirschfelder, J.O., Wyatt, R.E. and Coalson, R.D.) 387–527 (John Wiley & Sons, Ltd., 2007).
5. Deutch, J. M. & Oppenheim, I. Time correlation functions in nuclear magnetic relaxation. Adv. Opt. Magn. Reson. 3, 43–78 (1968).
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献