Abstract
AbstractThe molten core drawing method allows scalable fabrication of novel core fibres with kilometre lengths. With metal and semiconducting components combined in a glass-clad fibre, CO2 laser irradiation was used to write localised structures in the core materials. Thermal gradients in axial and transverse directions allowed the controlled introduction, segregation and chemical reaction of metal components within an initially pure silicon core, and restructuring of heterogeneous material. Gold and tin longitudinal electrode fabrication, segregation of GaSb and Si into parallel layers, and Al doping of a GaSb core were demonstrated. Gold was introduced into Si fibres to purify the core or weld an exposed fibre core to a Si wafer. Ga and Sb introduced from opposite ends of a silicon fibre reacted to form III-V GaSb within the Group IV Si host, as confirmed by structural and chemical analysis and room temperature photoluminescence.
Funder
Vetenskapsrådet
Knut och Alice Wallenbergs Stiftelse
Norges Forskningsråd
Stiftelsen för Strategisk Forskning
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献