Electricity generation from carbon dioxide adsorption by spatially nanoconfined ion separation

Author:

Wang ZhuyuanORCID,Hu Ting,Tebyetekerwa MikeORCID,Zeng XiangkangORCID,Du Fan,Kang Yuan,Li Xuefeng,Zhang Hao,Wang HuantingORCID,Zhang XiwangORCID

Abstract

AbstractSelective ion transport underpins fundamental biological processes for efficient energy conversion and signal propagation. Mimicking these ‘ionics’ in synthetic nanofluidic channels has been increasingly promising for realizing self-sustained systems by harvesting clean energy from diverse environments, such as light, moisture, salinity gradient, etc. Here, we report a spatially nanoconfined ion separation strategy that enables harvesting electricity from CO2 adsorption. This breakthrough relies on the development of Nanosheet-Agarose Hydrogel (NAH) composite-based generators, wherein the oppositely charged ions are released in water-filled hydrogel channels upon adsorbing CO2. By tuning the ion size and ion-channel interactions, the released cations at the hundred-nanometer scale are spatially confined within the hydrogel network, while ångström-scale anions pass through unhindered. This leads to near-perfect anion/cation separation across the generator with a selectivity (D-/D+) of up to 1.8 × 106, allowing conversion into external electricity. With amplification by connecting multiple as-designed generators, the ion separation-induced electricity reaching 5 V is used to power electronic devices. This study introduces an effective spatial nanoconfinement strategy for widely demanded high-precision ion separation, encouraging a carbon-negative technique with simultaneous CO2 adsorption and energy generation.

Publisher

Springer Science and Business Media LLC

Reference43 articles.

1. IPCC, “Climate change 2014: mitigation of climate change” 41–47 https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_full.pdf (Cambridge University Press, 2014).

2. International Energy Agency, “CO2 emissions from fuel combustion highlights” 9–21 https://emis.vito.be/sites/emis.vito.be/files/articles/3331/2016/CO2EmissionsfromFuelCombustion_Highlights_2016.pdf (International Energy Agency, 2016).

3. Rhodes, C. J. The 2015 Paris climate change conference: COP21. Sci. Prog. 99, 97–104 (2016).

4. Cohen, R., Eames, P. C., Hammond, G. P., Newborough, M. & Norton, B. The 2021 Glasgow climate pact–steps on the transition pathway towards a low carbon world. Proc. Inst. Civ. Eng.: Energy 3, 97–102 (2022).

5. Bui, M. et al. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11, 1062–1176 (2018).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3