Abstract
AbstractMulti-host parasites pose greater health risks to wildlife, livestock, and humans than single-host parasites, yet our understanding of how ecological and biological factors influence a parasite’s host range remains limited. Here, we assemble the largest and most complete dataset on permanently parasitic mammalian mites and build a predictive model assessing the probability of single-host parasites to become multi-hosts, while accounting for potentially unobserved host-parasite links and class imbalance. This model identifies statistically significant predictors related to parasites, hosts, climate, and habitat disturbance. The most important predictors include the parasite’s contact level with the host immune system and two variables characterizing host phylogenetic similarity and spatial co-distribution. Our model reveals an overrepresentation of mites associated with Rodentia (rodents), Chiroptera (bats), and Carnivora in the multi-host risk group. This highlights both the potential vulnerability of these hosts to parasitic infestations and the risk of serving as reservoirs of parasites for new hosts. In addition, we find independent macroevolutionary evidence that supports our prediction of several single-host species of Notoedres, the bat skin parasites, to be in the multi-host risk group, demonstrating the forecasting potential of our model.
Publisher
Springer Science and Business Media LLC
Reference70 articles.
1. Van Klinken, R. Host specificity testing: why do we do it and how we can do it better. Proceedings, host specificity testing of exotic arthropod biological control agents: the biological basis for improvement in safety, X international symposium on biological control of weeds, July 4–14, 1999, Bozeman, Montana, U.S.A. 1, 54–68 (2000).
2. Rigaud, T., Perrot-Minnot, M. J. & Brown, M. J. Parasite and host assemblages: embracing the reality will improve our knowledge of parasite transmission and virulence. Proc. R. Soc. B 277, 3693–3702 (2010).
3. Cressler, C. E., McLeod, D. V., Rozins, C., van den Hoogen, J. & Day, T. The adaptive evolution of virulence: a review of theoretical predictions and empirical tests. Parasitology 143, 915–930 (2016).
4. Regoes, R. R., Nowak, M. A. & Bonhoeffer, S. Evolution of virulence in a heterogeneous host population. Evolution 54, 64–71 (2000).
5. Woolhouse, M. E. & Gowtage-Sequeria, S. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis. 11, 1842–1847 (2005).