Abstract
AbstractThe hyperfluorescence (HF) system has drawn great attention in display technology. However, the energy loss mechanism by low reverse intersystem crossing rate (kRISC) and the Dexter energy transfer (DET) channel is still challenging. Here, we demonstrate that this can be mitigated by the quadrupolar donor-acceptor-donor (D-A-D) type of thermally activated delayed fluorescence (TADF) sensitizer materials, DBA-DmICz and DBA-DTMCz. Further, the HF device with DBA-DTMCz andν-DABNA exhibited 43.9% of high maximum external quantum efficiency (EQEmax) with the Commission Internationale de l'Éclairage coordinates of (0.12, 0.16). The efficiency values recorded for the device are among the highest reported for HF devices. Such high efficiency is assisted by hindered DET process through i) highkRISC, and ii) shielded lowest unoccupied molecular orbital with the presence of two donors in D-A-D type of skeleton. Our current study provides an effective way of designing TADF sensitizer for future HF technology.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献