Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets

Author:

Harmon Stephanie A.ORCID,Sanford Thomas H.,Xu Sheng,Turkbey Evrim B.,Roth HolgerORCID,Xu Ziyue,Yang Dong,Myronenko Andriy,Anderson Victoria,Amalou Amel,Blain MaximeORCID,Kassin Michael,Long DilaraORCID,Varble Nicole,Walker Stephanie M.ORCID,Bagci Ulas,Ierardi Anna Maria,Stellato Elvira,Plensich Guido Giovanni,Franceschelli Giuseppe,Girlando Cristiano,Irmici Giovanni,Labella Dominic,Hammoud Dima,Malayeri Ashkan,Jones Elizabeth,Summers Ronald M.,Choyke Peter L.,Xu Daguang,Flores Mona,Tamura Kaku,Obinata Hirofumi,Mori Hitoshi,Patella FrancescaORCID,Cariati MaurizioORCID,Carrafiello Gianpaolo,An Peng,Wood Bradford J.ORCID,Turkbey BarisORCID

Abstract

AbstractChest CT is emerging as a valuable diagnostic tool for clinical management of COVID-19 associated lung disease. Artificial intelligence (AI) has the potential to aid in rapid evaluation of CT scans for differentiation of COVID-19 findings from other clinical entities. Here we show that a series of deep learning algorithms, trained in a diverse multinational cohort of 1280 patients to localize parietal pleura/lung parenchyma followed by classification of COVID-19 pneumonia, can achieve up to 90.8% accuracy, with 84% sensitivity and 93% specificity, as evaluated in an independent test set (not included in training and validation) of 1337 patients. Normal controls included chest CTs from oncology, emergency, and pneumonia-related indications. The false positive rate in 140 patients with laboratory confirmed other (non COVID-19) pneumonias was 10%. AI-based algorithms can readily identify CT scans with COVID-19 associated pneumonia, as well as distinguish non-COVID related pneumonias with high specificity in diverse patient populations.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3