Abstract
AbstractPhotocatalytic hydrogen peroxide (H2O2) generation represents a promising approach for artificial photosynthesis. However, the sluggish half-reaction of water oxidation significantly limits the efficiency of H2O2 generation. Here, a benzylamine oxidation with more favorable thermodynamics is employed as the half-reaction to couple with H2O2 generation in water by using defective zirconium trisulfide (ZrS3) nanobelts as a photocatalyst. The ZrS3 nanobelts with disulfide (S22−) and sulfide anion (S2−) vacancies exhibit an excellent photocatalytic performance for H2O2 generation and simultaneous oxidation of benzylamine to benzonitrile with a high selectivity of >99%. More importantly, the S22− and S2− vacancies can be separately introduced into ZrS3 nanobelts in a controlled manner. The S22− vacancies are further revealed to facilitate the separation of photogenerated charge carriers. The S2− vacancies can significantly improve the electron conduction, hole extraction, and kinetics of benzylamine oxidation. As a result, the use of defective ZrS3 nanobelts yields a high production rate of 78.1 ± 1.5 and 32.0 ± 1.2 μmol h−1 for H2O2 and benzonitrile, respectively, under a simulated sunlight irradiation.
Funder
China Postdoctoral Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
113 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献