Windows of opportunity for predicting seasonal climate extremes highlighted by the Pakistan floods of 2022

Author:

Dunstone NickORCID,Smith Doug M.ORCID,Hardiman Steven C.,Davies Paul,Ineson Sarah,Jain Shipra,Kent Chris,Martin GillORCID,Scaife Adam A.ORCID

Abstract

AbstractSkilful predictions of near-term climate extremes are key to a resilient society. However, standard methods of analysing seasonal forecasts are not optimised to identify the rarer and most impactful extremes. For example, standard tercile probability maps, used in real-time regional climate outlooks, failed to convey the extreme magnitude of summer 2022 Pakistan rainfall that was, in fact, widely predicted by seasonal forecasts. Here we argue that, in this case, a strong summer La Niña provided a window of opportunity to issue a much more confident forecast for extreme rainfall than average skill estimates would suggest. We explore ways of building forecast confidence via a physical understanding of dynamical mechanisms, perturbation experiments to isolate extreme drivers, and simple empirical relationships. We highlight the need for more detailed routine monitoring of forecasts, with improved tools, to identify regional climate extremes and hence utilise windows of opportunity to issue trustworthy and actionable early warnings.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3