Electric pulse-tuned piezotronic effect for interface engineering

Author:

Yu QiuhongORCID,Ge RuiORCID,Wen JuanORCID,Xu QiORCID,Lu Zhouguang,Liu ShuhaiORCID,Qin YongORCID

Abstract

AbstractInvestigating interface engineering by piezoelectric, flexoelectric and ferroelectric polarizations in semiconductor devices is important for their applications in electronics, optoelectronics, catalysis and many more. The interface engineering by polarizations strongly depends on the property of interface barrier. However, the fixed value and uncontrollability of interface barrier once it is constructed limit the performance and application scenarios of interface engineering by polarizations. Here, we report a strategy of tuning piezotronic effect (interface barrier and transport controlled by piezoelectric polarization) reversibly and accurately by electric pulse. Our results show that for Ag/HfO2/n-ZnO piezotronic tunneling junction, the interface barrier height can be reversibly tuned as high as 168.11 meV by electric pulse, and the strain (0–1.34‰) modulated current range by piezotronic effect can be switched from 0–18 nA to 44–72 nA. Moreover, piezotronic modification on interface barrier tuned by electric pulse can be up to 148.81 meV under a strain of 1.34‰, which can totally switch the piezotronic performance of the electronics. This study provides opportunities to achieve reversible control of piezotronics, and extend them to a wider range of scenarios and be better suitable for micro/nano-electromechanical systems.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3