Abstract
AbstractBioinspired dry adhesives have an extraordinary impact in the field of robotic manipulation and locomotion. However, there is a considerable difference between artificial structures and biological ones regarding surface adaptability, especially for rough surfaces. This can be attributed to their distinct structural configuration and forming mechanism. Here, we propose a core–shell adhesive structure that is obtained through a growth strategy, i.e., an electrically responsive self-growing core–shell structure. This growth strategy results in a specific mushroom-shaped structure with a rigid core and a soft shell, which exhibits excellent adhesion on typical target surfaces with roughness ranging from the nanoscale to the microscale up to dozens of micrometers. The proposed adhesion strategy extends dry adhesives from smooth surfaces to rough ones, especially for rough surfaces with roughness up to dozens or hundreds of micrometers, opening an avenue for the development of dry adhesive-based devices and systems.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献