Abstract
AbstractSolar-heating catalysis has the potential to realize zero artificial energy consumption, which is restricted by the low ambient solar heating temperatures of photothermal materials. Here, we propose the concept of using heterostructures of black photothermal materials (such as Bi2Te3) and infrared insulating materials (Cu) to elevate solar heating temperatures. Consequently, the heterostructure of Bi2Te3 and Cu (Bi2Te3/Cu) increases the 1 sun-heating temperature of Bi2Te3 from 93 °C to 317 °C by achieving the synergy of 89% solar absorption and 5% infrared radiation. This strategy is applicable for various black photothermal materials to raise the 1 sun-heating temperatures of Ti2O3, Cu2Se, and Cu2S to 295 °C, 271 °C, and 248 °C, respectively. The Bi2Te3/Cu-based device is able to heat CuOx/ZnO/Al2O3 nanosheets to 305 °C under 1 sun irradiation, and this system shows a 1 sun-driven hydrogen production rate of 310 mmol g−1 h−1 from methanol and water, at least 6 times greater than that of all solar-driven systems to date, with 30.1% solar-to-hydrogen efficiency and 20-day operating stability. Furthermore, this system is enlarged to 6 m2 to generate 23.27 m3/day of hydrogen under outdoor sunlight irradiation in the spring, revealing its potential for industrial manufacture.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
79 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献