Abstract
AbstractReal time monitoring of chirality transfer processes is necessary to better understand their kinetic properties. Herein, we monitor an ideal chirality transfer process from a statistically random distribution to a diastereomerically pure assembly in real time. The chirality transfer is based on discrete trimeric tubular assemblies of planar chiral pillar[5]arenes, achieving the construction of diastereomerically pure trimers of pillar[5]arenes through synergistic effect of ion pairing between a racemic rim-differentiated pillar[5]arene pentaacid bearing five benzoic acids on one rim and five alkyl chains on the other, and an optically resolved pillar[5]arene decaamine bearing ten amines. When the decaamine is mixed with the pentaacid, the decaamine is sandwiched by two pentaacids through ten ion pairs, initially producing a statistically random mixture of a homochiral trimer and two heterochiral trimers. The heterochiral trimers gradually dissociate and reassemble into the homochiral trimers after unit flipping of the pentaacid, leading to chirality transfer from the decaamine and producing diastereomerically pure trimers.
Funder
MEXT | Japan Society for the Promotion of Science
Fundamental Research Funds for the Central Universities
MEXT | JST | Exploratory Research for Advanced Technology
MEXT | JST | Core Research for Evolutional Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献