The pace of shifting seasons in lakes

Author:

Woolway R. IestynORCID

Abstract

AbstractLake ecosystems are vulnerable to seasonal thermal cues, with subtle alterations in the timing of seasonal temperatures having a dramatic influence on aquatic species. Here, a measure of seasonal change in temperature is used to describe the pace of shifting seasons in lakes. Since 1980 spring and summer temperatures in Northern Hemisphere lakes have arrived earlier (2.0- and 4.3-days decade−1, respectively), whilst the arrival of autumn has been delayed (1.5-days decade−1) and the summer season lengthened (5.6-days decade−1). This century, under a high-greenhouse-gas-emission scenario, current spring and summer temperatures will arrive even earlier (3.3- and 8.3-days decade−1, respectively), autumn temperatures will arrive later (3.1-days decade−1), and the summer season will lengthen further (12.1-days decade−1). These seasonal alterations will be much slower under a low-greenhouse-gas-emission scenario. Changes in seasonal temperatures will benefit some species, by prolonging the growing season, but negatively impact others, by leading to phenological mismatches in critical activities.

Funder

RCUK | Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3