Abstract
Abstract
Ribosomes stalled during translation must be rescued to replenish the pool of translation-competent ribosomal subunits. Bacterial alternative rescue factor B (ArfB) releases nascent peptides from ribosomes stalled on mRNAs truncated at the A site, allowing ribosome recycling. Prior structural work revealed that ArfB recognizes such ribosomes by inserting its C-terminal α-helix into the vacant mRNA tunnel. In this work, we report that ArfB can efficiently recognize a wider range of mRNA substrates, including longer mRNAs that extend beyond the A-site codon. Single-particle cryo-EM unveils that ArfB employs two modes of function depending on the mRNA length. ArfB acts as a monomer to accommodate a shorter mRNA in the ribosomal A site. By contrast, longer mRNAs are displaced from the mRNA tunnel by more than 20 Å and are stabilized in the intersubunit space by dimeric ArfB. Uncovering distinct modes of ArfB function resolves conflicting biochemical and structural studies, and may lead to re-examination of other ribosome rescue pathways, whose functions depend on mRNA lengths.
Funder
U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference71 articles.
1. Korostelev, A. A. Structural aspects of translation termination on the ribosome. RNA 17, 1409–1421 (2011).
2. Dunkle, J. A. & Cate, J. H. Ribosome structure and dynamics during translocation and termination. Annu. Rev. Biophys. 39, 227–244 (2010).
3. Ramakrishnan, V. Ribosomes: Structure, Function, and Dynamics (eds Rodnina, M., Wintermeyer, W. & Green, R.) 19–30 (Springer, 2011).
4. Rodnina, M. V. Translation in prokaryotes. Cold Spring Harb Perspect Biol 10,
https://doi.org/10.1101/cshperspect.a032664
(2018).
5. Youngman, E. M., McDonald, M. E. & Green, R. Peptide release on the ribosome: mechanism and implications for translational control. Annu Rev. Microbiol 62, 353–373 (2008).
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献