Ensuring scientific reproducibility in bio-macromolecular modeling via extensive, automated benchmarks
-
Published:2021-11-29
Issue:1
Volume:12
Page:
-
ISSN:2041-1723
-
Container-title:Nature Communications
-
language:en
-
Short-container-title:Nat Commun
Author:
Koehler Leman JuliaORCID, Lyskov SergeyORCID, Lewis Steven M., Adolf-Bryfogle JaredORCID, Alford Rebecca F., Barlow KyleORCID, Ben-Aharon ZivORCID, Farrell DanielORCID, Fell JasonORCID, Hansen William A., Harmalkar AmeyaORCID, Jeliazkov JeliazkoORCID, Kuenze Georg, Krys Justyna D.ORCID, Ljubetič AjasjaORCID, Loshbaugh Amanda L., Maguire Jack, Moretti Rocco, Mulligan Vikram Khipple, Nance Morgan L.ORCID, Nguyen Phuong T., Ó Conchúir Shane, Roy Burman Shourya S.ORCID, Samanta Rituparna, Smith Shannon T.ORCID, Teets Frank, Tiemann Johanna K. S.ORCID, Watkins Andrew, Woods HopeORCID, Yachnin Brahm J.ORCID, Bahl Christopher D., Bailey-Kellogg Chris, Baker DavidORCID, Das RhijuORCID, DiMaio Frank, Khare Sagar D., Kortemme Tanja, Labonte Jason W., Lindorff-Larsen KrestenORCID, Meiler JensORCID, Schief WilliamORCID, Schueler-Furman OraORCID, Siegel Justin B., Stein AmelieORCID, Yarov-Yarovoy VladimirORCID, Kuhlman BrianORCID, Leaver-Fay AndrewORCID, Gront Dominik, Gray Jeffrey J.ORCID, Bonneau RichardORCID
Abstract
AbstractEach year vast international resources are wasted on irreproducible research. The scientific community has been slow to adopt standard software engineering practices, despite the increases in high-dimensional data, complexities of workflows, and computational environments. Here we show how scientific software applications can be created in a reproducible manner when simple design goals for reproducibility are met. We describe the implementation of a test server framework and 40 scientific benchmarks, covering numerous applications in Rosetta bio-macromolecular modeling. High performance computing cluster integration allows these benchmarks to run continuously and automatically. Detailed protocol captures are useful for developers and users of Rosetta and other macromolecular modeling tools. The framework and design concepts presented here are valuable for developers and users of any type of scientific software and for the scientific community to create reproducible methods. Specific examples highlight the utility of this framework, and the comprehensive documentation illustrates the ease of adding new tests in a matter of hours.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference83 articles.
1. Baker, M. & Penny, D. Is there a reproducibility crisis? Nature 533, 452–454 (2016). 2. Freedman, L. P., Cockburn, I. M. & Simcoe, T. S. The economics of reproducibility in preclinical research. PLOS Biol. 13, e1002165 (2015). 3. Peng, R. D. Reproducible research in computational science. Science 334, 1226–1227 (2011). 4. Koehler Leman, J. et al. Better together: elements of successful scientific software development in a distributed collaborative community. PLOS Comput. Biol. 16, e1007507 (2020). 5. Adorf, C. S., Ramasubramani, V., Anderson, J. A. & Glotzer, S. C. How to professionally develop reusable scientific software—and when not to. Comput. Sci. Eng. 21, 66–79 (2019).
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|