Incorporating social knowledge structures into computational models

Author:

Frolichs Koen M. M.ORCID,Rosenblau Gabriela,Korn Christoph W.ORCID

Abstract

AbstractTo navigate social interactions successfully, humans need to continuously learn about the personality traits of other people (e.g., how helpful or aggressive is the other person?). However, formal models that capture the complexities of social learning processes are currently lacking. In this study, we specify and test potential strategies that humans can employ for learning about others. Standard Rescorla-Wagner (RW) learning models only capture parts of the learning process because they neglect inherent knowledge structures and omit previously acquired knowledge. We therefore formalize two social knowledge structures and implement them in hybrid RW models to test their usefulness across multiple social learning tasks. We name these concepts granularity (knowledge structures about personality traits that can be utilized at different levels of detail during learning) and reference points (previous knowledge formalized into representations of average people within a social group). In five behavioural experiments, results from model comparisons and statistical analyses indicate that participants efficiently combine the concepts of granularity and reference points—with the specific combinations in models depending on the people and traits that participants learned about. Overall, our experiments demonstrate that variants of RW algorithms, which incorporate social knowledge structures, describe crucial aspects of the dynamics at play when people interact with each other.

Funder

Deutsche Forschungsgemeinschaft

U.S. Department of Health & Human Services | NIH | National Institute of Mental Health

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3