Abstract
AbstractUrethral stricture secondary to urethral injury, afflicting both patients and urologists, is initiated by excessive deposition of extracellular matrix in the submucosal and periurethral tissues. Although various anti-fibrotic drugs have been applied to urethral stricture by irrigation or submucosal injection, their clinical feasibility and effectiveness are limited. Here, to target the pathological state of the extracellular matrix, we design a protein-based nanofilm-controlled drug delivery system and assemble it on the catheter. This approach, which integrates excellent anti-biofilm properties with stable and controlled drug delivery for tens of days in one step, ensures optimal efficacy and negligible side effects while preventing biofilm-related infections. In a rabbit model of urethral injury, the anti-fibrotic catheter maintains extracellular matrix homeostasis by reducing fibroblast-derived collagen production and enhancing metalloproteinase 1-induced collagen degradation, resulting in a greater improvement in lumen stenosis than other topical therapies for urethral stricture prevention. Such facilely fabricated biocompatible coating with antibacterial contamination and sustained-drug-release functionality could not only benefit populations at high risk of urethral stricture but also serve as an advanced paradigm for a range of biomedical applications.
Funder
China National Funds for Distinguished Young Scientists
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Reference68 articles.
1. Hampson, L. A., McAninch, J. W. & Breyer, B. N. Male urethral strictures and their management. Nat. Rev. Urol. 11, 43–50 (2014).
2. Lumen, N. et al. Etiology of urethral stricture disease in the 21st century. J. Urol. 182, 983–987 (2009).
3. Chen, M. L., Correa, A. F. & Santucci, R. A. Urethral strictures and stenoses caused by prostate therapy. Rev. Urol. 18, 90–102 (2016).
4. Hollingsworth, J. M. et al. Determining the noninfectious complications of indwelling urethral catheters. Ann. Intern. Med. 159, 401–410 (2013).
5. Prihadi, J. C., Sugandi, S., Siregar, N. C., Soejono, G. & Harahap, A. Imbalance in extracellular matrix degradation in urethral stricture. Res. Rep. Urol. 10, 227–232 (2018).
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献