Supervised dimensionality reduction for big data

Author:

Vogelstein Joshua T.ORCID,Bridgeford Eric W.,Tang Minh,Zheng Da,Douville Christopher,Burns Randal,Maggioni Mauro

Abstract

AbstractTo solve key biomedical problems, experimentalists now routinely measure millions or billions of features (dimensions) per sample, with the hope that data science techniques will be able to build accurate data-driven inferences. Because sample sizes are typically orders of magnitude smaller than the dimensionality of these data, valid inferences require finding a low-dimensional representation that preserves the discriminating information (e.g., whether the individual suffers from a particular disease). There is a lack of interpretable supervised dimensionality reduction methods that scale to millions of dimensions with strong statistical theoretical guarantees. We introduce an approach to extending principal components analysis by incorporating class-conditional moment estimates into the low-dimensional projection. The simplest version, Linear Optimal Low-rank projection, incorporates the class-conditional means. We prove, and substantiate with both synthetic and real data benchmarks, that Linear Optimal Low-Rank Projection and its generalizations lead to improved data representations for subsequent classification, while maintaining computational efficiency and scalability. Using multiple brain imaging datasets consisting of more than 150 million features, and several genomics datasets with more than 500,000 features, Linear Optimal Low-Rank Projection outperforms other scalable linear dimensionality reduction techniques in terms of accuracy, while only requiring a few minutes on a standard desktop computer.

Funder

United States Department of Defense | Defense Advanced Research Projects Agency

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

Reference62 articles.

1. Vogelstein, J. T. et al. Discovery of brainwide neural-behavioral maps via multiscale unsupervised structure learning. Science 344, 386–392 (2014).

2. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. In Proc. Advances in Neural Information Processing Systems (eds. Pereira, F., Burges, C. J. C., Bottou, L. & Weinberger, K. Q.) 1097–1105 (Curran Associates, Inc. 2012).

3. Fisher, R. A. Theory of statistical estimation. Math. Proc. Cambridge Philos. Soc. 22, 700–725 (1925).

4. Jolliffe, I. T. in Principal Component Analysis, Springer Series in Statistics Ch. 1 (Springer, 1986).

5. Lee, J. A. & Verleysen, M. Nonlinear Dimensionality Reduction (Springer, 2007). .

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3