High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit

Author:

Li Xuan-KunORCID,Ma Jian-Xu,Li Xiang-Yu,Hu Jun-Jie,Ding Chuan-Yang,Han Feng-Kai,Guo Xiao-Min,Tan XiORCID,Jin Xian-MinORCID

Abstract

AbstractReinforcement learning (RL) stands as one of the three fundamental paradigms within machine learning and has made a substantial leap to build general-purpose learning systems. However, using traditional electrical computers to simulate agent-environment interactions in RL models consumes tremendous computing resources, posing a significant challenge to the efficiency of RL. Here, we propose a universal framework that utilizes a photonic integrated circuit (PIC) to simulate the interactions in RL for improving the algorithm efficiency. High parallelism and precision on-chip optical interaction calculations are implemented with the assistance of link calibration in the hybrid architecture PIC. By introducing similarity information into the reward function of the RL model, PIC-RL successfully accomplishes perovskite materials synthesis task within a 3472-dimensional state space, resulting in a notable 56% improvement in efficiency. Our results validate the effectiveness of simulating RL algorithm interactions on the PIC platform, highlighting its potential to boost computing power in large-scale and sophisticated RL tasks.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3