An optoacoustic field-programmable perceptron for recurrent neural networks

Author:

Becker Steven,Englund DirkORCID,Stiller BirgitORCID

Abstract

AbstractRecurrent neural networks (RNNs) can process contextual information such as time series signals and language. But their tracking of internal states is a limiting factor, motivating research on analog implementations in photonics. While photonic unidirectional feedforward neural networks (NNs) have demonstrated big leaps, bi-directional optical RNNs present a challenge: the need for a short-term memory that (i) programmable and coherently computes optical inputs, (ii) minimizes added noise, and (iii) allows scalability. Here, we experimentally demonstrate an optoacoustic recurrent operator (OREO) which meets (i, ii, iii). OREO contextualizes the information of an optical pulse sequence via acoustic waves. The acoustic waves link different optical pulses, capturing their information and using it to manipulate subsequent operations. OREO’s all-optical control on a pulse-by-pulse basis offers simple reconfigurability and is used to implement a recurrent drop-out and pattern recognition of 27 optical pulse patterns. Finally, we introduce OREO as bi-directional perceptron for new classes of optical NNs.

Funder

Max-Planck-Gesellschaft

Deutsche Forschungsgemeinschaft

Studienstiftung des Deutschen Volkes

Publisher

Springer Science and Business Media LLC

Reference71 articles.

1. Yu, Y., Si, X., Hu, C. & Zhang, J. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput. 31, 1235–1270 (2019).

2. Salehinejad, H., Sankar, S., Barfett, J., Colak, E. & Valaee, S. Recent Advances in Recurrent Neural Networks. Preprint at https://arxiv.org/abs/1801.01078 (2018).

3. Van Den Oord, A., Kalchbrenner, N. & Kavukcuoglu, K. Pixel recurrent neural networks. In Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48, ICML’16, 1747–1756 (JMLR.org, 2016).

4. Mesnil, G. et al. Using Recurrent Neural Networks for Slot Filling in Spoken Language Understanding. IEEE/ACM Trans. Audio Speech Lang. Process. 23, 530–539 (2015).

5. Donahue, J. et al. Long-Term Recurrent Convolutional Networks for Visual Recognition and Description. IEEE Trans. Pattern Anal. Mach. Intell. 39, 677–691 (2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3