Epigenome environment interactions accelerate epigenomic aging and unlock metabolically restricted epigenetic reprogramming in adulthood

Author:

Treviño Lindsey S.ORCID,Dong JianrongORCID,Kaushal Ahkilesh,Katz Tiffany A.,Jangid Rahul Kumar,Robertson Matthew J.,Grimm Sandra L.,Ambati Chandra Shekar R.,Putluri Vasanta,Cox Aaron R.ORCID,Kim Kang Ho,May Thaddeus D.,Gallo Morgan R.,Moore David D.ORCID,Hartig Sean M.,Foulds Charles E.,Putluri Nagireddy,Coarfa CristianORCID,Walker Cheryl Lyn

Abstract

AbstractOur early-life environment has a profound influence on developing organs that impacts metabolic function and determines disease susceptibility across the life-course. Using a rat model for exposure to an endocrine disrupting chemical (EDC), we show that early-life chemical exposure causes metabolic dysfunction in adulthood and reprograms histone marks in the developing liver to accelerate acquisition of an adult epigenomic signature. This epigenomic reprogramming persists long after the initial exposure, but many reprogrammed genes remain transcriptionally silent with their impact on metabolism not revealed until a later life exposure to a Western-style diet. Diet-dependent metabolic disruption was largely driven by reprogramming of the Early Growth Response 1 (EGR1) transcriptome and production of metabolites in pathways linked to cholesterol, lipid and one-carbon metabolism. These findings demonstrate the importance of epigenome:environment interactions, which early in life accelerate epigenomic aging, and later in adulthood unlock metabolically restricted epigenetic reprogramming to drive metabolic dysfunction.

Funder

U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

American Diabetes Association

Cancer Prevention and Research Institute of Texas

U.S. Department of Health & Human Services | NIH | National Cancer Institute

U.S. Department of Health & Human Services | NIH | National Institute of Environmental Health Sciences

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3