Abstract
AbstractMeasurement-based quantum computation with optical time-domain multiplexing is a promising method to realize a quantum computer from the viewpoint of scalability. Fault tolerance and universality are also realizable by preparing appropriate resource quantum states and electro-optical feedforward that is altered based on measurement results. While linear feedforward has been realized and become a common experimental technique, nonlinear feedforward was unrealized until now. In this paper, we demonstrate that a fast and flexible nonlinear feedforward realizes the essential measurement required for fault-tolerant and universal quantum computation. Using non-Gaussian ancillary states, we observed 10% reduction of the measurement excess noise relative to classical vacuum ancilla.
Funder
MEXT | Japan Science and Technology Agency
MEXT | Japan Society for the Promotion of Science
UTokyo Foundation Donations from Nichia Corporation
Forefront Physics and Mathematics Program to Drive Transformatio
Research Foundation for Opto-Science and Technology
Grantová Agentura České Republiky
EC | Horizon 2020 Framework Programme
Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献