Digital electronics in fibres enable fabric-based machine-learning inference

Author:

Loke Gabriel,Khudiyev Tural,Wang Brian,Fu StephanieORCID,Payra SyamantakORCID,Shaoul Yorai,Fung Johnny,Chatziveroglou Ioannis,Chou Pin-Wen,Chinn Itamar,Yan WeiORCID,Gitelson-Kahn Anna,Joannopoulos John,Fink YoelORCID

Abstract

AbstractDigital devices are the essential building blocks of any modern electronic system. Fibres containing digital devices could enable fabrics with digital system capabilities for applications in physiological monitoring, human-computer interfaces, and on-body machine-learning. Here, a scalable preform-to-fibre approach is used to produce tens of metres of flexible fibre containing hundreds of interspersed, digital temperature sensors and memory devices with a memory density of ~7.6 × 105 bits per metre. The entire ensemble of devices are individually addressable and independently operated through a single connection at the fibre edge, overcoming the perennial single-fibre single-device limitation and increasing system reliability. The digital fibre, when incorporated within a shirt, collects and stores body temperature data over multiple days, and enables real-time inference of wearer activity with an accuracy of 96% through a trained neural network with 1650 neuronal connections stored within the fibre. The ability to realise digital devices within a fibre strand which can not only measure and store physiological parameters, but also harbour the neural networks required to infer sensory data, presents intriguing opportunities for worn fabrics that sense, memorise, learn, and infer situational context.

Funder

National Science Foundation

United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Laboratory

MIT | MIT Sea Grant, Massachusetts Institute of Technology

United States Department of Defense | Defense Threat Reduction Agency

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

Reference24 articles.

1. Page, T. Barriers to the adoption of wearable technology. J. Inf. Technol. 4, 1–13 (2015).

2. Loke, G. et al. Computing fabrics. Matter 2, 786–788 (2020).

3. John Walker, S. Big Data: a revolution that will transform how we live, work and think. Int. J. Advert. 33, 181–183 (2014).

4. Plummer, J. D., Deal, M. D. & Griffin, P. B. Silicon VLSI Technology: Fundamentals, Practice and Modeling (Pearson India Education Services, 2016).

5. Kwiatkowski, R. & Lipson, H. Task-agnostic self-modeling machines. Sci. Robot. 4, eaau9354 (2019).

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3