Abstract
AbstractZero- to ultralow-field nuclear magnetic resonance (ZULF NMR) allows molecular structure elucidation via measurement of electron-mediated spin-spin J-couplings. This study examines zero-field J-spectra from molecules with quadrupolar nuclei, exemplified by solutions of various isotopologues of ammonium cations. The spectra reveal differences between various isotopologues upon extracting precise J-coupling values from pulse-acquire measurements. A primary isotope effect, $$\triangle J=\left({\gamma }_{{}^{14}{{{{{\rm{N}}}}}}}/{\gamma }_{{}^{15}{{{{{\rm{N}}}}}}}\right){J}_{{}^{15}{{{{{\rm{N}}}}}}{{{{{\rm{H}}}}}}}-{J}_{{}^{14}{{{{{\rm{N}}}}}}{{{{{\rm{H}}}}}}}\approx -58$$
△
J
=
γ
14
N
/
γ
15
N
J
15
N
H
−
J
14
N
H
≈
−
58
mHz, is deduced by analysis of the proton-nitrogen J-coupling ratios. This study points toward further experiments with symmetric cations containing quadrupolar nuclei, promising applications in biomedicine, energy storage, and benchmarking quantum chemistry calculations.
Funder
Alexander von Humboldt-Stiftung
in the framework of Sofja Kovalevskaja Award
Publisher
Springer Science and Business Media LLC