Abstract
AbstractIn itinerant magnetic systems, a spin density wave (SDW) state can be induced by Fermi surface nesting and electron-electron interaction. It may intertwine with other orders such as charge density wave (CDW), while their relation is still yet to be understood. Here via spin-polarized scanning tunneling microscopy, we directly observed long-range spin modulation on Cr(001) surface, which corresponds to the well-known incommensurate SDW of bulk Cr. It displays 6.0 nm in-plane period and anti-phase behavior between adjacent (001) planes. Meanwhile, we simultaneously observed the coexisting CDW with half the period of SDW. Such SDW/CDW have highly correlated domain structures and are in-phase. Surprisingly, the CDW displays a contrast inversion around a density-of-states dip at −22 meV, indicating an anomalous CDW gap opened below EF. These observations support that the CDW is a secondary order driven by SDW. Our work is not only a real-space characterization of incommensurate SDW, but also provides insights on how SDW and CDW coexist.
Funder
National Natural Science Foundation of China
Science and Technology Commission of Shanghai Municipality
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献