Exon-junction complex association with stalled ribosomes and slow translation-independent disassembly

Author:

Bensaude OlivierORCID,Barbosa Isabelle,Morillo Lucia,Dikstein Rivka,Le Hir Hervé

Abstract

AbstractExon junction complexes are deposited at exon-exon junctions during splicing. They are primarily known to activate non-sense mediated degradation of transcripts harbouring premature stop codons before the last intron. According to a popular model, exon-junction complexes accompany mRNAs to the cytoplasm where the first translating ribosome pushes them out. However, they are also removed by uncharacterized, translation-independent mechanisms. Little is known about kinetic and transcript specificity of these processes. Here we tag core subunits of exon-junction complexes with complementary split nanoluciferase fragments to obtain sensitive and quantitative assays for complex formation. Unexpectedly, exon-junction complexes form large stable mRNPs containing stalled ribosomes. Complex assembly and disassembly rates are determined after an arrest in transcription and/or translation. 85% of newly deposited exon-junction complexes are disassembled by a translation-dependent mechanism. However as this process is much faster than the translation-independent one, only 30% of the exon-junction complexes present in cells at steady state require translation for disassembly. Deep RNA sequencing shows a bias of exon-junction complex bound transcripts towards microtubule and centrosome coding ones and demonstrate that the lifetimes of exon-junction complexes are transcript-specific. This study provides a dynamic vision of exon-junction complexes and uncovers their unexpected stable association with ribosomes.

Funder

Weston visiting professor at the Weizmann Institute of Science

Estate of Manfred and Margaret Tannen Joel and Mady Dukler Fund for Cancer Research

Agence Nationale de la Recherche

Fondation pour la Recherche Médicale

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3