Abstract
AbstractThe oxidative dehydrogenation of propane using CO2 (CO2-ODP) is a promising technique for high-yield propylene production and CO2 utilization. The development of a highly efficient catalyst for CO2-ODP is of great interest and benefit to the chemical industry as well as net zero emissions. Here, we report a unique catalyst material and design concept based on high-entropy intermetallics for this challenging chemistry. A senary (PtCoNi)(SnInGa) catalyst supported on CeO2 with a PtSn intermetallic structure exhibits a considerably higher catalytic activity, C3H6 selectivity, long-term stability, and CO2 utilization efficiency at 600 °C than previously reported. Multi-metallization of the Pt and Sn sites by Co/Ni and In/Ga, respectively, greatly enhances propylene selectivity, CO2 activation ability, thermal stability, and regenerable ability. The results obtained in this study can promote carbon-neutralization of industrial processes for light alkane conversion.
Funder
MEXT | Japan Society for the Promotion of Science
MEXT | Japan Science and Technology Agency
MEXT | JST | Core Research for Evolutional Science and Technology
MEXT | JST | Precursory Research for Embryonic Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献