Bioactive hierarchical silk fibers created by bioinspired self-assembly

Author:

Fan Linpeng,Li Jing-LiangORCID,Cai Zengxiao,Wang Xungai

Abstract

AbstractArtificial recapitulation of the hierarchy of natural protein fibers is crucial to providing strategies for developing advanced fibrous materials. However, it is challenging due to the complexity of the natural environment. Inspired by the liquid crystalline spinning of spiders, we report the development of natural silk-like hierarchical fibers, with bundles of nanofibrils aligned in their long-axis direction, by self-assembly of crystallized silk fibroin (SF) droplets. The formation of self-assembled SF fibers is a process of coalesced droplets sprouting to form a branched fibrous network, which is similar to the development of capillaries in our body. The as-assembled hierarchical SF fibers are highly bioactive and can significantly enhance the spreading and growth of human umbilical vein endothelial cells compared to the natural SF fibers. This work could help to understand the natural silk spinning process of spiders and provides a strategy for design and development of advanced fibrous biomaterials for various applications.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3