Abstract
AbstractExtreme atmospheric rivers (EARs) are responsible for most of the severe precipitation and disastrous flooding along the coastal regions in midlatitudes. However, the current non-eddy-resolving climate models severely underestimate (~50%) EARs, casting significant uncertainties on their future projections. Here, using an unprecedented set of eddy-resolving high-resolution simulations from the Community Earth System Model simulations, we show that the models’ ability of simulating EARs is significantly improved (despite a slight overestimate of ~10%) and the EARs are projected to increase almost linearly with temperature warming. Under the Representative Concentration Pathway 8.5 warming scenario, there will be a global doubling or more of the occurrence, integrated water vapor transport and precipitation associated with EARs, and a more concentrated tripling for the landfalling EARs, by the end of the 21st century. We further demonstrate that the coupling relationship between EARs and storms will be reduced in a warming climate, potentially influencing the predictability of future EARs.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献