Multimodal deep learning for Alzheimer’s disease dementia assessment

Author:

Qiu Shangran,Miller Matthew I.,Joshi Prajakta S.,Lee Joyce C.,Xue Chonghua,Ni Yunruo,Wang Yuwei,De Anda-Duran IleanaORCID,Hwang Phillip H.ORCID,Cramer Justin A.,Dwyer Brigid C.,Hao Honglin,Kaku Michelle C.,Kedar Sachin,Lee Peter H.,Mian Asim Z.,Murman Daniel L.,O’Shea Sarah,Paul Aaron B.,Saint-Hilaire Marie-Helene,Alton Sartor E.,Saxena Aneeta R.,Shih Ludy C.ORCID,Small Juan E.ORCID,Smith Maximilian J.,Swaminathan Arun,Takahashi Courtney E.,Taraschenko Olga,You Hui,Yuan JingORCID,Zhou Yan,Zhu Shuhan,Alosco Michael L.,Mez Jesse,Stein Thor D.,Poston Kathleen L.ORCID,Au Rhoda,Kolachalama Vijaya B.ORCID

Abstract

AbstractWorldwide, there are nearly 10 million new cases of dementia annually, of which Alzheimer’s disease (AD) is the most common. New measures are needed to improve the diagnosis of individuals with cognitive impairment due to various etiologies. Here, we report a deep learning framework that accomplishes multiple diagnostic steps in successive fashion to identify persons with normal cognition (NC), mild cognitive impairment (MCI), AD, and non-AD dementias (nADD). We demonstrate a range of models capable of accepting flexible combinations of routinely collected clinical information, including demographics, medical history, neuropsychological testing, neuroimaging, and functional assessments. We then show that these frameworks compare favorably with the diagnostic accuracy of practicing neurologists and neuroradiologists. Lastly, we apply interpretability methods in computer vision to show that disease-specific patterns detected by our models track distinct patterns of degenerative changes throughout the brain and correspond closely with the presence of neuropathological lesions on autopsy. Our work demonstrates methodologies for validating computational predictions with established standards of medical diagnosis.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3