Abstract
AbstractCausal mechanisms for fluid injection-induced earthquakes remain a challenge to identify. Past studies largely established spatiotemporal correlations. Here, we propose a multi-process causal mechanism for injection-induced earthquakes through a case study of the 2017 Mw 5.5 induced earthquake near Pohang Enhanced Geothermal System, Korea, where detailed hydraulic stimulation and on-site seismicity monitoring data provide an unprecedented opportunity. Pore pressure modeling reveals that pore pressure changes initiate seismicity on critically stressed faults and Coulomb static stress transfer modeling reveals that earthquake interactions promote continued seismicity, leading to larger events. On the basis of these results, we propose the following causal mechanism for induced seismicity: pore pressure increase and earthquake interactions lead to fault weakening and ultimately triggering larger earthquakes later in the process. We suggest that it is prudent that pore pressure change, initial seismicity locations, and Coulomb static stress transfer from seismicity earlier in the sequence are assessed in real-time.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献