Human detection of political speech deepfakes across transcripts, audio, and video

Author:

Groh MatthewORCID,Sankaranarayanan Aruna,Singh NikhilORCID,Kim Dong YoungORCID,Lippman Andrew,Picard RosalindORCID

Abstract

AbstractRecent advances in technology for hyper-realistic visual and audio effects provoke the concern that deepfake videos of political speeches will soon be indistinguishable from authentic video. We conduct 5 pre-registered randomized experiments with N = 2215 participants to evaluate how accurately humans distinguish real political speeches from fabrications across base rates of misinformation, audio sources, question framings with and without priming, and media modalities. We do not find base rates of misinformation have statistically significant effects on discernment. We find deepfakes with audio produced by the state-of-the-art text-to-speech algorithms are harder to discern than the same deepfakes with voice actor audio. Moreover across all experiments and question framings, we find audio and visual information enables more accurate discernment than text alone: human discernment relies more on how something is said, the audio-visual cues, than what is said, the speech content.

Funder

TruePic Research Grant, Kellogg School of Management, MIT Media Lab

Publisher

Springer Science and Business Media LLC

Reference107 articles.

1. Hancock, J. T. & Bailenson, J. N. The social impact of deepfakes. Cyberpsychol. Behav. Soc. Netw. 24, 149–152 (2021).

2. Chesney, B. & Citron, D. Deep fakes: A looming challenge for privacy, democracy, and national security. Calif. L. Rev. 107, 1753 (2019).

3. Paris, B. & Donovan, J. Deepfakes and Cheap Fakes. United States of America: Data & Society (2019).

4. Leibowicz, C., McGregor, S. & Ovadya, A. The Deepfake Detection Dilemma: A Multistakeholder Exploration of Adversarial Dynamics in Synthetic Media (2021).

5. Agarwal, S. et al. Protecting World Leaders Against Deep Fakes. In CVPR workshops, vol. 1 (2019).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Representative Study on Human Detection of Artificially Generated Media Across Countries;2024 IEEE Symposium on Security and Privacy (SP);2024-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3