Reversal of carbonate-silicate cation exchange in cold slabs in Earth’s lower mantle

Author:

Lv MingdaORCID,Dorfman Susannah M.ORCID,Badro JamesORCID,Borensztajn Stephan,Greenberg EranORCID,Prakapenka Vitali B.ORCID

Abstract

AbstractThe stable forms of carbon in Earth’s deep interior control storage and fluxes of carbon through the planet over geologic time, impacting the surface climate as well as carrying records of geologic processes in the form of diamond inclusions. However, current estimates of the distribution of carbon in Earth’s mantle are uncertain, due in part to limited understanding of the fate of carbonates through subduction, the main mechanism that transports carbon from Earth’s surface to its interior. Oxidized carbon carried by subduction has been found to reside in MgCO3 throughout much of the mantle. Experiments in this study demonstrate that at deep mantle conditions MgCO3 reacts with silicates to form CaCO3. In combination with previous work indicating that CaCO3 is more stable than MgCO3 under reducing conditions of Earth’s lowermost mantle, these observations allow us to predict that the signature of surface carbon reaching Earth’s lowermost mantle may include CaCO3.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3