Abstract
AbstractIn situ coordination-activated n-doping by air-stable metals in electron-transport organic ligands has proven to be a viable method to achieve Ohmic electron injection for organic optoelectronics. However, the mutual exclusion of ligands with high nucleophilic quality and strong electron affinity limits the injection efficiency. Here, we propose meta-linkage diphenanthroline-type ligands, which not only possess high electron affinity and good electron transport ability but also favour the formation of tetrahedrally coordinated double-helical metal complexes to decrease the ionization energy of air-stable metals. An electron injection layer (EIL) compatible with various cathodes and electron transport materials is developed with silver as an n-dopant, and the injection efficiency outperforms conventional EILs such as lithium compounds. A deep-blue organic light-emitting diode with an optimized EIL achieves a high current efficiency calibrated by the y colour coordinate (0.045) of 237 cd A−1 and a superb LT95 of 104.1 h at 5000 cd m−2.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献