Abstract
AbstractFrequency combs and cavity-enhanced optical techniques have revolutionized molecular spectroscopy: their combination allows recording saturated Doppler-free lines with ultrahigh precision. Network theory, based on the generalized Ritz principle, offers a powerful tool for the intelligent design and validation of such precision-spectroscopy experiments and the subsequent derivation of accurate energy differences. As a proof of concept, 156 carefully-selected near-infrared transitions are detected for H216O, a benchmark system of molecular spectroscopy, at kHz accuracy. These measurements, augmented with 28 extremely-accurate literature lines to ensure overall connectivity, allow the precise determination of the lowest ortho-H216O energy, now set at 23.794 361 22(25) cm−1, and 160 energy levels with similarly high accuracy. Based on the limited number of observed transitions, 1219 calibration-quality lines are obtained in a wide wavenumber interval, which can be used to improve spectroscopic databases and applied to frequency metrology, astrophysics, atmospheric sensing, and combustion chemistry.
Funder
Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献