Gravitationally induced decoherence vs space-time diffusion: testing the quantum nature of gravity

Author:

Oppenheim JonathanORCID,Sparaciari CarloORCID,Šoda BarbaraORCID,Weller-Davies Zachary

Abstract

AbstractWe consider two interacting systems when one is treated classically while the other system remains quantum. Consistent dynamics of this coupling has been shown to exist, and explored in the context of treating space-time classically. Here, we prove that any such hybrid dynamics necessarily results in decoherence of the quantum system, and a breakdown in predictability in the classical phase space. We further prove that a trade-off between the rate of this decoherence and the degree of diffusion induced in the classical system is a general feature of all classical quantum dynamics; long coherence times require strong diffusion in phase-space relative to the strength of the coupling. Applying the trade-off relation to gravity, we find a relationship between the strength of gravitationally-induced decoherence versus diffusion of the metric and its conjugate momenta. This provides an experimental signature of theories in which gravity is fundamentally classical. Bounds on decoherence rates arising from current interferometry experiments, combined with precision measurements of mass, place significant restrictions on theories where Einstein’s classical theory of gravity interacts with quantum matter. We find that part of the parameter space of such theories are already squeezed out, and provide figures of merit which can be used in future mass measurements and interference experiments.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Reference131 articles.

1. DeWitt, C. M. & Rickles, D. The Role of Gravitation in Physics: Report from the 1957 Chapel Hill Conference, Vol. 5 (epubli, 2011).

2. Feynman, R. P. In Feynman Lectures on Gravitation (eds Morinigo, F. B., Wagner, W. G. & Hatfield, B.) 10–11 (1996).

3. Aharonov, Y. & Rohrlich, D. Quantum Paradoxes: Quantum Theory for the Perplexed 212–213 (Wiley-VCH, 2003).

4. Eppley, K. & Hannah, E. The necessity of quantizing the gravitational field. Found. Phys. 7, 51 (1977).

5. Unruh, W. G. Steps towards a quantum theory of gravity. In Quantum Theory of Gravity: Essays in honor of the 60th birthday of Bryce S. DeWitt (ed Christensen, S. M.) (Adam Hilger Ltd., 1984).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3