Application of machine learning models for property prediction to targeted protein degraders

Author:

Peteani Giulia,Huynh Minh Tam DavideORCID,Gerebtzoff GrégoriORCID,Rodríguez-Pérez RaquelORCID

Abstract

AbstractMachine learning (ML) systems can model quantitative structure-property relationships (QSPR) using existing experimental data and make property predictions for new molecules. With the advent of modalities such as targeted protein degraders (TPD), the applicability of QSPR models is questioned and ML usage in TPD-centric projects remains limited. Herein, ML models are developed and evaluated for TPDs’ property predictions, including passive permeability, metabolic clearance, cytochrome P450 inhibition, plasma protein binding, and lipophilicity. Interestingly, performance on TPDs is comparable to that of other modalities. Predictions for glues and heterobifunctionals often yield lower and higher errors, respectively. For permeability, CYP3A4 inhibition, and human and rat microsomal clearance, misclassification errors into high and low risk categories are lower than 4% for glues and 15% for heterobifunctionals. For all modalities, misclassification errors range from 0.8% to 8.1%. Investigated transfer learning strategies improve predictions for heterobifunctionals. This is the first comprehensive evaluation of ML for the prediction of absorption, distribution, metabolism, and excretion (ADME) and physicochemical properties of TPD molecules, including heterobifunctional and molecular glue sub-modalities. Taken together, our investigations show that ML-based QSPR models are applicable to TPDs and support ML usage for TPDs’ design, to potentially accelerate drug discovery.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3